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Abstract—In this paper, based on function approximation 

techniques and sliding mode control strategy, a robust controller 

for blood glucose regulation is presented. Recently, there has 

been an increasing trend towards application of fractional order 

calculus in various fields. Healthcare of patients involved in 

diabetes mellitus is not exception and various researches have 

been carried out in this area. In order to design a robust 

controller, uncertainties should be estimated and compensated. 

Different estimators can be used for this purpose such as neural 

networks and fuzzy systems, due to their property of universal 

approximation. However, there are many tuning parameters in 

these estimators. Based on the orthogonal functions theorem, we 

can design other uncertainty estimators such as the Fourier series 

expansion and Legendre polynomials. Thus, in this paper, the 

Fourier series expansion is applied for uncertainty estimation in 

fractional order control of blood glucose.  The efficiency of the 

proposed controller, i.e. robustness and high accuracy, in 

presence of physical disturbances like food intake and parametric 

uncertainties is verified via simulations. 

Keywords-Fractional calculus; function approximation 

techniques; blood glucose regulation) 

I. INTRODUCTION(HEADING 1) 

Diabetes is discussed as a serious condition in which the 
body’s production and use of insulin are impaired, causing 
glucose concentration level to increase in the bloodstream. 
Insulin is a hormone generated by specific cells, called beta 
cells, in the pancreas. In order to transfer blood glucose into 
cells, insulin is required.  Two types of diabetes have been 
recognized. In type I diabetes mellitus (T1DM), the b-cells in 
the pancreas that are responsible for producing insulin are 
destroyed by the immune system of the patients. Thus, the 
current solution for treatment is the delivery of exogenous 
insulin to maintain the glucose levels close to normal. 

Based on continuous glucose monitoring (CGM) systems 
and insulin pumps technologies, a controller that automatically 
monitors and regulates the blood glucose level can be designed. 
In other words, it can play the role of an artificial pancreas 
system to replace the conventional treatment strategies in 
T1DM. In recent decades, various approaches have been 
presented in the literature for intelligent control of blood 
glucose. In this paper, the 3rd order minimal model of 
Bergman [1] is adopted. 

Various approaches have been presented to design a 
feedback controller for blood glucose regulation, such as fuzzy 
logic control [2-5], recurrent neural networks [6], model 
predictive control (MPC) [7], high order sliding mode control 
[8], optimal control [9] and back-stepping sliding mode control 
[10]. Also, based on fractional order control, interesting 
approaches have been introduced in the field of blood glucose 
regulation [11-15].  

Fractional calculus is a generalization of ordinary 
differentiation- integration operations to an arbitrary fractional 
order. This field of mathematics was viewed as an only 
theoretical topic with no practical applications for 300 years 
[16]. However, recently, it has been used in different fields of 
engineering and physics. Fractional-order controllers provide 
extra parameters for tuning. Hence, using this idea in modern 
nonlinear control techniques like SMC can be useful. 

According to the universal approximation theorem [17], 
fuzzy estimators can approximate any real continuous 
nonlinear function. Also, this theorem has been developed for 
neural networks such as radial basis function networks (RBFN) 
[18]. Based on the orthogonal functions theorem [19], Fourier 
series can also approximate nonlinear functions. This theorem 
states that a set of basis functions that their mutual inner 
products are zero, can be used for approximation of nonlinear 
functions with small approximation error. In Fourier series, 
these basis functions are sinusoidal terms and in Legendre 
polynomials, these basis functions are some polynomials that 
satisfy the orthogonality condition. Moreover, this theorem 
states that the approximation error is bounded. Also, the 
coefficient of each basis function in the final representation of 
the desired nonlinear function can be calculated by some 
integrations. In other words, the space of nonlinear functions 
can be spanned by that set of orthogonal functions. In [20], the 
controller designed based on the Fourier series has been 
practically implemented. This uncertainty estimator is simpler 
and less computational. Using this estimator, some controllers 
have been presented [21-23] in the field of robust and adaptive 
control. Thus, in this paper, this estimator is adopted for robust 
regulation of blood glucose. 

This paper is organized as follows. Section 2 introduces 
fractional calculus. Section 3, describes the glucose-insulin 
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model. Section 4 explains the Fourier series expansion. Section 
5 develops the proposed controller. Section 6 illustrates 
simulation results. Finally, section 7 concludes the paper. 

II.  FRACTIONAL CALCULUS 

Let us first introduce Caputo definition and results needed 
here with respect to fractional calculus which will be used later.  

Definition 1. The  th-order Caputo fractional derivative 

of function ( )f t is given by [24] 
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Definition 2. Fractional integration of the order 0   of

1([0, ])f L T , is defined as [25] 
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Definition 3. The Caputo fractional derivative of order 0   

of ([0, ])nf C T , is defined as ( ) ( )n nD f t I D f t  , where 

[ ]n   [25]. 

Lemma 1: The Caputo fractional derivative of a function in 

quadratic form is given by the following [26] 
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where ( )t x ; and 0  P  is a constant matrix. 

III. GLUCOSE - INSULIN DYNAMIC  

     Many models for describing glucose-insulin process has 

been presented. Bergman’s minimal model has been proposed 

in 1980 by Doctor Richard Bergman. The main advantage of 

the Bergman minimal model is its simplicity. Following is the 

Bergman Minimal Model (BeM) [27] 

(5) 

 

 

   

0

0

0

1 1 1 1 2

2 2 2 3 3

3 3 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

C

t t b

C

t t b

C

t t b b

D x t p x t G x t x t D t

D x t p x t p x t I

D x t n x t I t x t G u t





 


    

   

     

 
 

in which 1( )x t , 2 ( )x t  and 3( )x t  are plasma glucose 

concentration, the insulin influence on glucose concentration 

reduction, and insulin concentration in plasma respectively, 

( )u t R is injected insulin rate in (mU/min), bG is the basal 

pre-injection level of glucose (mg/dl), bI is the basal pre-

injection level of insulin (µU/ml), 1p the insulin independent 

rate constant of glucose uptake in muscles and liver (1/min), 

2p the rate for decrease in tissue glucose uptake ability 

(1/min), 3p  the insulin-dependent increase in glucose uptake 

ability in tissue per-unit of insulin concentration above the 

basal level ((µU/ml)/min). The term  1B ( ) bt t G


  

represents the pancreatic insulin secretion after a meal in take 
at t = 0. As this work is focused on Insulin therapy which is 
usually administrated to Type I diabetes mellitus patients, γ is 
assumed to be zero to represent the true dynamic of this disease 
and p should also be considered zero. The parameter n is the 
first order decay rate for insulin in blood. This disturbance can 
be modeled by a decaying exponential function of the 
following form [28]:  

(6) ( ) exp( ) 0D t A Bt B    

The pump can be modeled as a first order linear system: 

(7) 
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where ( )w t  is insulin rate command in pump as input, and the 

parameter a is pump time constant. 

IV. THE FOURIER SERIES EXPANSION 

     According to [29], if the function ( )F t  defined on 1 2[ , ]t t  

satisfies the Dirichlet's conditions, then it can be expressed as 
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where 0a , 
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kb are the Fourier series coefficients, 

2k k T  are the frequencies of sinusoidal functions and T

is the fundamental period of ( )F t  . The truncation error is 
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Note that ( )mF t  can be written as  
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It should be mentioned that in control systems, the function 

( )g t  is not available and (10)-(12) cannot be applied for 

calculation of the Fourier series coefficients. In fact, these 
coefficients should be adjusted online using adaptation laws 
derived from the stability analysis. 

V.  THE PROPOSED CONTROLLER 

Taking the fractional derivative of (5) three times and using 
(7) results in 

(16) 
0

4
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where ( )f t  is a complicated function of 1( )x t , 2 ( )x t  and 

3( )x t  which is assumed unknown and should be estimated in 

the control law. In other words, based on (9), we have  
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Assume that 
* * ( )Tf t   is the best approximation of ( )f t  

using m  frequencies. Since ( )f t  is uncertain, 
*  is unknown 

and its estimation ̂  is used. The adaptation law tries to make 

̂  converge to 
* .  Define the sliding surface as 
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in which  

                                       1 1( ) ( )de x t x t                              (20) 

is the tracking error, 1 ( )dx t is the desired blood glucose level 

and   is a design parameter. Also, (19) can be rewritten as 
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Based on the sliding mode control strategy, the control law is 

obtained by 
0

0C

t tD s  . As a result, it follows from (25) that 

                 
0

0 0 0

4

1

3 2 2 3

( ) ( ) ( )

3 3

C

t t d

C C C

t t t t t t

w t D x t f t

D e D e D e



    

 

  
                   (26) 

Since ( )f t  is unknown, it cannot be used in the control law 

and its estimation as given by (18) should be used. Thus, the 
control law is modified as 
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in which ru has been considered for compensation of the 

truncation error of the Fourier series expansion ( )t . Based on 

the orthogonal functions theorem that states the approximation 
error is bounded, we can assume that  

                                         ( )t                                        (28) 

in which   is a known positive constant. Using Lyapunov 

stability theorem, the adaptation law for ̂  and the robust 

control term ru can be obtained as 

                                    
0

ˆ ( )C
t tD s t                                   (29)     

                                      ( )ru sign s                                   

(30) 

in which Based on Barbalat’s lemma [30], the asymptotic 
convergence of the tracking error can be guaranteed.  

 

Table 1 The model parameters 

Bergman minimal model 
0  1

1(min)P  
0123.0  1

2(min)P  
8102.8   1

3(min)P  
2659.0  )(min 1n  
7  

bI  
70  

bG  
200  

1(0 )B  
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50  
3(0 )B  

 

 

Remark: To attenuate the possible problem of chattering 
phenomenon caused by the sign function, the proportional-
integrator structure proposed in [31-33] or the modification 
proposed in [34] can be used. 

 

Fig.1 Glucose concentration 

 
Fig. 2 Plasma insulin concentration 

VI.  SIMULATION RESULTS 

    Consider the model described in [35]. Its parameters are 

given in Table 1. The parameter of the controller have been set 

to 0.015, 1, 0.0001, 0.86       . The blood glucose 

level is presented in Fig. 1. As shown in this figure, the 

controller can reduce the blood glucose concentration from the 

initial value of 200 (mg/dl) to the approximate value of 80 

(mg/dl) which is our desired level. In comparison with 

controller designed in [35], the proposed controller is superior. 

The reason is that when the external disturbance 

( ) 80exp( 0.5t)D t    affects the control system at 

400,800(min)t  , the increase in the glucose level is less 

that of the controller designed in [35].  

     The Plasma insulin concentration in (mU/L) is illustrated in 

Fig.2. As shown in this figure, the proposed controller 

outperforms the controller designed in [35]. The initial 

increase of Plasma insulin concentration for the proposed  

 
Fig. 3 Control low (insulin injection with pump) 

 

controller is much less than that of the controller designed in 

[35]. The control signal ( )w t  which is the insulin injection 

with pump has been presented in Fig.3.  

  

 CONCLUSION 

    In this paper, a fractional order controller for blood glucose 

regulation in type I diabetes patients has been presented. 

Uncertainties have been estimated and compensated using the 

Fourier series expansion which is less computational in 

comparison with other uncertainty estimators. The sliding 

mode control strategy has been adopted to make the controller 

robust against external disturbances. Simulation results verify 

the satisfactory performance of the proposed controller in 

comparison with a previous related work. 
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